skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Briggs, Martin A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Groundwater seepage from underlying permeable glacial sedimentary structures, such as eskers, has been hypothesized to directly feed pools in northern peat bogs. These hypotheses directly contradict classical peat bog models for ombrogenous systems, wherein meteoric water is the sole water input to these systems. Variations in the underlying mineral sediment in contact with the peat imply that unrecognized hydrogeologic connectivity may exist with pools in northern peat bogs, particularly where high permeability materials are in contact with the peat. Seepage dynamics originating from these structural variations were investigated using a suite of thermal and hydrogeophysical methods deployed around pools in a peat bog of northeastern Maine, USA. Thermal characterization methods mapped anomalies that were confirmed as matrix seepage or preferential flow pathways (PFPs). Geochemical methods were employed at identified thermal anomalies to confirm upwelling of solute-rich groundwater. Conduits around pools were associated with surficial terminations of suspected peat pipes, based on the inference of pathways extending down into the peat, that focus flow through PFPs in the peat matrix. Discharge also occurred through the peat matrix adjacent to suspected pipe structures and matrix seepage rates were quantified using analysis of diurnal temperature signals recorded at multiple depths. Seepage rates, with a maximum of nearly 0.4 m/d, were measured at localized points around pools. Periods of synchronized temperatures paired with highly muted diurnal temperature signals, recorded in diurnal temperature with depth data, were interpreted qualitatively as activation of strong upward discharge rates through suspected peat pipes. These time periods correlated strongly with local precipitation events around the peatland. Ground-penetrating radar surveys revealed discontinuities in the low permeability glacio-marine clay at the mineral sediment-peat interface, interpreted to be regional glacial esker deposits, which were located beneath and around pools. Heat tracing, specific conductance contrasts, seepage rates, and trace metal concentrations all imply groundwater seepage originating from underlying permeable glacial esker deposits and directly sourcing pools. Preferential groundwater inputs into northern peat bogs may play a key role in developing and maintaining pool systems, with enhanced solute transport impacting peatland ecology, water resources, and carbon cycling. 
    more » « less
  2. Driven by the need for integrated management of groundwater (GW) and surface water (SW), quantification of GW–SW interactions and associated contaminant transport has become increasingly important. This is due to their substantial impact on water quantity and quality. In this review, we provide an overview of the methods developed over the past several decades to investigate GW–SW interactions. These methods include geophysical, hydrometric, and tracer techniques, as well as various modeling approaches. Different methods reveal valuable information on GW–SW interactions at different scales with their respective advantages and limitations. Interpreting data from these techniques can be challenging due to factors like scale effects, heterogeneous hydrogeological conditions, sediment variability, and complex spatiotemporal connections between GW and SW. To facilitate the selection of appropriate methods for specific sites, we discuss the strengths, weaknesses, and challenges of each technique, and we offer perspectives on knowledge gaps in the current science. 
    more » « less
  3. Abstract Groundwater discharge to streams is a nonpoint source of nitrogen (N) that confounds N mitigation efforts and represents a significant portion of the annual N loading to watersheds. However, we lack an understanding of where and how much groundwater N enters streams and watersheds. Nitrogen concentrations at the end of groundwater flowpaths are the culmination of biogeochemical and physical processes from the contributing land area where groundwater recharges, within the aquifer system, and in the near-stream riparian area where groundwater discharges to streams. Our research objectives were to quantify the spatial distribution of N concentrations at groundwater discharges throughout a mixed land-use watershed and to evaluate how relationships among contributing and riparian land cover, modeled aquifer characteristics, and groundwater discharge biogeochemistry explain the spatial variation in groundwater discharge N concentrations. We accomplished this by integrating high-resolution thermal infrared surveys to locate groundwater discharge, biogeochemical sampling of groundwater, and a particle tracking model that links groundwater discharge locations to their contributing area land cover. Groundwater N loading from groundwater discharges within the watershed varied substantially between and within streambank groundwater discharge features. Groundwater nitrate concentrations were spatially heterogeneous ranging from below 0.03–11.45 mg-N/L, varying up to 20-fold within meters. When combined with the particle tracking model results and land cover metrics, we found that groundwater discharge nitrate concentrations were best predicted by a linear mixed-effect model that explained over 60% of the variation in nitrate concentrations, including aquifer chemistry (dissolved oxygen, Cl, SO42−), riparian area forested land cover, and modeled physical aquifer characteristics (discharge, Euclidean distance). Our work highlights the significant spatial variability in groundwater discharge nitrate concentrations within mixed land-use watersheds and the need to understand groundwater N processing across the many spatiotemporal scales within groundwater cycling. 
    more » « less
  4. Abstract Riverbank groundwater discharge faces are spatially extensive areas of preferential seepage that are exposed to air at low river flow. Some conceptual hydrologic models indicate discharge faces represent the spatial convergence of highly variable age and length groundwater flowpaths, while others indicate greater consistency in source groundwater characteristics. Our detailed field investigation of preferential discharge points nested across mainstem riverbank discharge faces was accomplished by: (1) leveraging new temperature‐based recursive estimation (extended Kalman Filter) modelling methodology to evaluate seasonal, diurnal, and event‐driven groundwater flux patterns, (2) developing a multi‐parameter toolkit based on readily measured attributes to classify the general source groundwater flowpath depth and flowpath length scale, and, (3) assessing whether preferential flow points across discharge faces tend to represent common or convergent groundwater sources. Five major groundwater discharge faces were mapped along the Farmington River, CT, United States using thermal infrared imagery. We then installed vertical temperature profilers directly into 39 preferential discharge points for 4.5 months to track vertical discharge flux patterns. Monthly water chemistry was also collected at the discharge points along with one spatial synoptic of stable isotopes of water and dissolved radon gas. We found pervasive evidence of shallow groundwater sources at the upstream discharge faces along a wide valley section with deep bedrock, as primarily evidenced by pronounced diurnal discharge flux patterns. Discharge flux seasonal trends and bank storage transitions during large river flow events provided further indication of shallow, local sources. In contrast, downstream discharge faces associated with near surface cross cutting bedrock exhibited deep and regional source flowpath characteristics such as more stable discharge patterns and temperatures. However, many neighbouring points across discharge faces had similar discharge flux patterns that differed in chloride and radon concentrations, indicating the additional effects of localized flowpath heterogeneity overprinting on larger scale flowpath characteristics. 
    more » « less
  5. We used spatial data from previously mapped preferential groundwater discharges throughout the Farmington River watershed in Connecticut and Massachusetts (https://doi.org/10.5066/P915E8JY) to guide water sample collection at known locations of groundwater discharging to surface water. In 2017 and 2019 - 2021, samples were collected during general river baseflow conditions (July ? November, less than 30.9 cms mean daily discharge (USGS gage 01189995, statistics 2010-2022) when the riverbank discharge points were exposed. We collected a suite of dissolved constituents and stable isotopes of water directly in the shallow saturated sediments of active points of discharge, and coincident stream chemical samples were also collected adjacent to locations of groundwater discharge. Data collected includes nutrients (NO3, NH4, Cl, SO4, PO4, dissolved organic carbon (DOC), and total nitrogen (TN)), greenhouse gases (CO2, CH4, and N2O), dissolved gases (N2, dissolved oxygen (DO)), conductivity, sediment characteristics, temperature, and spatial information. This dataset includes 2 main files: 1) Farmington_Chemistry_2017_2021.csv contains attribute information for each biogeochemical constituent collected at preferential groundwater discharges along the Farmington River network. 2)Farmington_Temporal_Cl_Rn_Iso_2020.csv contain attribute information for source characteristic data (Chloride, Radon, Isotope) collected at locations of repeat sampling at 5 groundwater seep faces along the Farmington River (Alsop and Rainbow Island). 
    more » « less
  6. Abstract Groundwater/surface‐water (GW/SW) exchange and hyporheic processes are topics receiving increasing attention from the hydrologic community. Hydraulic, chemical, temperature, geophysical, and remote sensing methods are used to achieve various goals (e.g., inference of GW/SW exchange, mapping of bed materials, etc.), but the application of these methods is constrained by site conditions such as water depth, specific conductance, bed material, and other factors. Researchers and environmental professionals working on GW/SW problems come from diverse fields and rarely have expertise in all available field methods; hence there is a need for guidance to design field campaigns and select methods that both contribute to study goals and are likely to work under site‐specific conditions. Here, we present the spreadsheet‐based GW/SW‐Method Selection Tool (GW/SW‐MST) to help practitioners identify methods for use in GW/SW and hyporheic studies. The GW/SW‐MST is a Microsoft Excel‐based decision support tool in which the user selects answers to questions about GW/SW‐related study goals and site parameters and characteristics. Based on user input, the tool indicates which methods from a toolbox of 32 methods could potentially contribute to achieving the specified goals at the site described. 
    more » « less
  7. Groundwater discharge to rivers takes many forms, including preferential groundwater discharge points (PDPs) along riverbanks that are exposed at low flows, with multi-scale impacts on aquatic habitat and water quality. The physical controls on the spatial distribution of PDPs along riverbanks are not well-defined, rendering their prediction and representation in models challenging. To investigate the local riverbank sediment controls on PDP occurrence, we tested drone-based and handheld thermal infrared to efficiently map PDP locations along two mainstem rivers. Early in the study, we found drone imaging was better suited to locating tributary and stormwater inflows, which created relatively large water surface thermal anomalies in winter, compared to PDPs that often occurred at the sub-meter scale and beneath riparian tree canopy. Therefore, we primarily used handheld thermal infrared imaging from watercraft to map PDPs and larger seepage faces along 12-km of the fifth-order Housatonic River in Massachusetts, USA and 26-km of the Farmington River in Connecticut, USA. Overall, we mapped 31 riverbank PDPs along the Housatonic reach that meanders through lower permeability soils, and 104 PDPs along the Farmington reach that cuts through sandier sediments. Riverbank soil parameters extracted at PDP locations from the Soil Survey Geographic (SSURGO) database did not differ substantially from average bank soils along either reach, although the Farmington riverbank soils were on average 5× more permeable than Housatonic riverbank soils, likely contributing to the higher observed prevalence of PDPs. Dissolved oxygen measured in discharge water at these same PDPs varied widely, but showed no relation to measured sand, clay, or organic matter content in surficial soils indicating a lack of substantial near-surface aerobic reaction. The PDP locations were investigated for the presence of secondary bank structures, and commonly co-occurred with riparian tree root masses indicating the importance of localized physical controls on the spatial distribution of riverbank PDPs. 
    more » « less
  8. null (Ed.)
  9. Abstract Groundwater discharge generates streamflow and influences stream thermal regimes. However, the water quality and thermal buffering capacity of groundwater depends on the aquifer source-depth. Here, we pair multi-year air and stream temperature signals to categorize 1729 sites across the continental United States as having major dam influence, shallow or deep groundwater signatures, or lack of pronounced groundwater (atmospheric) signatures. Approximately 40% of non-dam stream sites have substantial groundwater contributions as indicated by characteristic paired air and stream temperature signal metrics. Streams with shallow groundwater signatures account for half of all groundwater signature sites and show reduced baseflow and a higher proportion of warming trends compared to sites with deep groundwater signatures. These findings align with theory that shallow groundwater is more vulnerable to temperature increase and depletion. Streams with atmospheric signatures tend to drain watersheds with low slope and greater human disturbance, indicating reduced stream-groundwater connectivity in populated valley settings. 
    more » « less